A Multistage Wiener Chaos Expansion Method for Stochastic Advection-Diffusion-Reaction Equations
نویسندگان
چکیده
Using Wiener chaos expansion (WCE), we develop numerical algorithms for solving second-order linear parabolic stochastic partial differential equations (SPDEs). We propose a deterministic WCE-based algorithm for computing moments of the SPDE solutions without any use of the Monte Carlo technique. We also compare the proposed deterministic algorithm with two other numerical methods based on the Monte Carlo technique and demonstrate that the new method is more efficient for highly accurate solutions. Numerical tests verify that the scheme is of mean-square order O( Δ N/2 √ (N+1)! ) for diffusion and for diffusion-reaction SPDEs with constant or variable coefficients, where Δ is the time step, and N is the Wiener chaos order.
منابع مشابه
Wiener Chaos Versus Stochastic Collocation Methods for Linear Advection-Diffusion-Reaction Equations with Multiplicative White Noise
We compare Wiener chaos and stochastic collocation methods for linear advectionreaction-diffusion equations with multiplicative white noise. Both methods are constructed based on a recursive multistage algorithm for long-time integration. We derive error estimates for both methods and compare their numerical performance. Numerical results confirm that the recursive multistage stochastic colloca...
متن کاملStochastic Differential Equations: a Wiener Chaos Approach
A new method is described for constructing a generalized solution for stochastic differential equations. The method is based on the Cameron-Martin version of the Wiener Chaos expansion and provides a unified framework for the study of ordinary and partial differential equations driven by finiteor infinite-dimensional noise with either adapted or anticipating input. Existence, uniqueness, regula...
متن کاملVariational multiscale stabilized FEM formulations for transport equations: stochastic advection-diffusion and incompressible stochastic Navier-Stokes equations
An extension of the deterministic variational multiscale (VMS) approach with algebraic subgrid scale (SGS) modeling is considered for developing stabilized finite element formulations for the stochastic advection and the incompressible stochastic Navier-Stokes equations. The stabilized formulations are numerically implemented using the spectral stochastic formulation of the finite element metho...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملar X iv : 0 70 6 . 23 90 v 1 [ m at h . PR ] 1 6 Ju n 20 07 STOCHASTIC PARABOLIC EQUATIONS OF FULL SECOND ORDER
A procedure is described for defining a generalized solution for stochastic differential equations using the Cameron-Martin version of the Wiener Chaos expansion. Existence and uniqueness of this Wiener Chaos solution is established for parabolic stochastic PDEs such that both the drift and the diffusion operators are of the second order.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 34 شماره
صفحات -
تاریخ انتشار 2012